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ABSTRACT

The signal detection characteristics of a two-input channel receiver
are studied. The signals received on both channels are random Gaussian,
narrowband processes identical except for a known channel-to-channel
time delay. For narrowband representation, the time delay is treated as
a differential phase modulation of the two signals. The noise on each of
the two receiver channels is also random Gaussian processes which are
jointly wide sense stationary and correlated. The receiver detects the
presence of a signal by estimating the average phase difference between
samples of the observed signals. The average phase is an input to a
matched filter detector where the filter is matched to the known phase
between the input signals. The receiver is intended to detect at signal-
to-noise ratios less than 0 dB and over a wide range of noise correlation
conditions.

The theoretical statistics required to predict the detection per-
formance are develcped. The receiver operating characteristic curves
are generated from the likelihood functions at the matched filter output.
An example of a possible signal phase function is considered and the
receiver performance predicted.

The performance of the signal phase matched filter receiver is
compared with a cross correlation receiver which includes a noise
decorrelator and signal phase compensator. The cross correlation receiver
is more sensitive than the signal phase matched filter receiver if the

noise correlation is known. However, if the noise correlation is unknownm
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and the detection is made using fixed signal processing and detection

threshold, the signal phase matched filter receiver gives superior

performaice.
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CHAPTER 1

INTRODUCTION

1.1 Source of Detection Problem

Radiation from a moving source produces a varying time delay between
signals received by two sensors which are separated by a baseline. If
the geometry of the moving source and the sensors is known, the varying
time delay can be predicted prior to detection of the signals. A
receiver which uses this known, varying time delay as a basis to detect
the presence of a signal source moving on a known course through a field
of stationary interfering noise sources has been investigated and its
detection characteristics have been defined.

Figure 1-1 shows a signal source which is passing with a known motion

through a field of stationary noise sources. The moving source radiates
a Gaussian signal which is received by two physically separated, narrow-
band sensors. The time delay between the Guassian, narrowband signals
| at the sensor outputs is determined by the source motion and the relative
geometry of the source and sensors. The time delay is treated as a phase
delay in expressing the received, narrowband signals. 4
The presence of stationary interference noise sources in an isotropic

Gaussian background noise field results in an anistropic noise field.

This anistrophic noise combines with the electrical noise of the sensors
such that the noise at the filtered sensor outputs is correlated. The

sensor output noise is stationary and Gaussian with unknown power level.

This research studied the detection problem after the reception of

the signals and noise by the two sensors. The problem investigated is
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3
the signal detection characteristics of a receiver with two input channels.
The signals in both channels are narrowband, random, Gaussian processes
which are identical except for a known, time varying phase delay. The
input noise is correlated, Gaussian noise of unknown power level. The
receiver detection process estimates the average phase difference between
the observed signals in the two receiver input channels. The estimated
average phase is an input to a detector which is an approximation of a
matched filter detector for the known phase delay between the desired

input signals.

1.2 Assumptions and Limitations

The signal detection system is intended to function at low signal-
to-noise ratios and over a variety of noise correlation values. The
signal processing is to be implemented using digital techniques. These
factors and the nature of the original detection problem result in a
number of assumptions. Any limitations imposed by these assumptions
must be considered when interpreting the results.

The received signal is a stationary narrowband, zero-mean Gaussian
stochastic process. The signal in one input is a phase-shifted version
of the signal in the other input. The signal power level is equal in
each input. The time varying phase delay between the input signals is
known. The bandwidth of the input signals is much greater than the band-
width associated with the time varying phase delay.

The noise in the two inputs is jointly stationary, correlated, zero-
mean, narrowband Gaussian noise. The power level of the noise is unknown,
but it is the same in each input. The detection process is investigated

for both known and unknown noise correlation cases.




The system is intended to detect at signal~to-noise ratios less
than 0 dB. The signal-processing interval is selected to be long enough
to achieve this goal.

The inputs are sampled and digitized. It is assumed that the
sampling period is adjusted to the input bandwidth such that sequential

samples are statistically independent.

1.3 Background

Detection of a Gaussian signal in Gaussian noise has been widely
investigated in the past [1], [2], [3]. The likelihood detector is
commonly used to detect signals which are not completely known. If the
input noise is correlated, the likelihood detector can be implemented
using a noise de-correlator or spatial prewhitener [4]. Thesg investiga-~
tions assumed the noise power level and noise correlation were known.

If the power level is unknown, a detector can be implemented comsisting
of two channels [5], [6]. One channel has the form of a likelihood ratio
detector and the other channel is a minimum variance power level estima-
tor. With two inputs, this detector takes the form of a cross correla-
tion detector. Source motion causes degradation in the output of the
correlator, unless the correlator implements a compensation delay
modulation, [7], [8].

Based on the above background, a receiver which could be used to
solve the detection problem would consist of a noise decorrelator, time
delay compensation modulator and cross correlation detector. Such a
receiver requires that the noise correlation be known in order to obtain

maximum sensitivity.

'3 N o AN oy i
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An alternative to the classical likelihood detector is a receiver
which estimates the phase between the signals at the filtered sensor
outputs. The signal is then detected using a matched filter detector
[9]. The filter is matched to the known phase delay. This alternate

receiver is analyzed and its detection characteristics determined.

1.4 Organization

Chapter II contains a detailed description of the detection problem.
The generalized received signal and noise model is explained. This is
followed by a description of the methods of estimating phase difference
and a description of the matched filter detector.

The theoretical statistics required to determine the detection
system performance are developed in Chapter III. These statistics are
a function of the input signal-to-noise ratio and the correlation
characteristics of the noise in the two channels of the receiver. Major
emphasis is placed on the statistics of the average phase estimate. The
material in this chapter forms the theoretical basis for understanding
the signal detection problem.

In Chapter IV, the receiver detection characteristics are determined
for a linear phase delay function. The matched filter configuration is
described, the effect of phase averaging examined and the theoretical
detection curves generated. The above assumes the noise correlation is
known. The chapter ends by investigating detection performance for the
unknown noise correlation case.

A performance comparison with the cross correlation detector is

made. This performance comparison is made for both known noise
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correlation and unknown noise correlation cases. The cross correlation 3

detector with noise de-correlator and phase shift compensation is
described in Appendix B.

Conclusions and recommendations are contained in Chapter V.




CHAPTER II

DETECTION PROBLEM

Detecting a dual channel differential phase modulated signal in

the presence of correlated noise is a problem in selecting one of two

possible hypotheses, the desired signal is present or the desired signal

is not present.

criterion [10] to test the hypotheses.

The receiver being studied uses the Neyman-Pearson

This criterian maximizes the

probability of detection for a given probability of false alarm. The

observable signals at the receiver inputs may be of two forms:

L3
1]
!
rz(t)

where r(t)
s(t)
n(t)
T(t)

0
or + nl(t)
s(t)

0

or + nz(t)

s[t—ﬁétﬂ

observable signal

[}

desired signal

noise

time delay.

The receiver is designed to operate on the observable signals and select

either the null hypothesis, Ho, or the alternmative hypothesis, Hl.

Symbolically these hypotheses are:

rl(c) = nl(t) s 0t sT
HO:
rz(t) = nz(t) , 0<stsT
L - a .

(2-1
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rl(c) s(t) + nl(t) , 0t sT

le (2-2)
r,(t) = s[t-rs(t)] #0,(0) ,0stsT

where T = period of s(t).

Figure 2-1 shows a block diagram of the receiver being studied.
The receiver consists of four basic blocks. The observed signals are
sampled and digitized. An estimate is made of the average difference
between phases of the two observable sequences. The resulting average
phase sequence is an input to a matched filter. The transfer function
of the filter is matched to the differential phase shift between the
desired signals received in the two input channels. If the filter output
exceeds a threshold, the Hl hvpothesis, signal present, is selected. If
the threshold is not exceeded, the Ho hypothesis, no signal present, is

selected.

2.1 Signal and Noise Model

The signal-noise model for the generalized detection problem is
shown in Figure 2-2. The noise sources nu(t), nv(t) and nI(t) are always
present. The signal s(t), which may or may not be present, is a random
narrowband Gaussian process with zero mean. A random process is narrow-
band if its spectral density is zero except for a narrow region around

a high carrier frequency [1l]. The received signal can be expressed as:

s(t) = sc(t) cos wct - ss(t) sin w t (2-3)

»
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where sc(t) = the in-phase component of s(t)
ss(t) = the quadrature component of s(t)

w, = the center frequency of the narrowband spectral
density of s(t).

It is assumed that the maximum rate with which the time delay, rs(t),

varies is very small when compared to the inverse of the signal band-

width. The signal bandwidth is defined by the receiver passband. The

in-phase and quadrature components of the time-delayed signal can there-

fore be considered to be:

1

sc[t-rs(t)]

5, [t-‘rs(t)]

sc(t)

"

ss(t).

The time-delayed signal is approximated as:

"

s[t—rs(t)] = sc(t) cos [wct—mcrs(t)] - ss(t) sin [wct—wcrs(t)] .
If the mcrs(t) is considered to be a variable phase,

$(t) = w T (£),
the time delayed signal may be expressed as:

s[t-E§t)] = sc(t) cos [mct-¢s(t)] - ss(t) sin [wct-¢s(tﬂ . (2-4)
The signals in the two channels of the receiver are expressed as:

sl(t) = sc(t) cos mct - ss(t) sin w.t

(2-5)

sz(t) = sc(t) cos [wct-¢s(t)] - ss(t) sin [wct—¢s(t)].

S SO
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The total received noise is the sum of the contributions from the

receiver electrical noise, the isotropic noise field and all stationary

interference sources. The received noise is represented by three
independent noise sources in the signal-noise model. The noise in each
channel can be considered to be the sum of a common or fully correlated
component and an independent component. The independent components are
represented by nu(t) and nv(t). The common component is nI(t). The
fixed time delay T associated with nI(t) is a composite of the time
delays of all the interference sources.

As these noise sources are independent random narrowband processes, .

they can be expressed:

nu(t) = nuc(t) cos wct - nus(t) sin wct i

nv(t) = nvc(t) cos wct - nvs(t) sin mct f
$ (2-6)

nI(t) = nIc(t) cos wct - nIS(t) sin mct

nI(t—rn) = nIc(t) cos (mct-¢1) - nIS(t) sin (mct—¢1) "

where

Using the above narrowband representation, the noise in the two receiver |

channels is:
nl(t) =[nuc(t) + nIc(t)] cos wct - [nus(t) + nIS(t)] sin wct \

nz(t) ==[nvc(t) + nIc(t) cos ¢I + nIs(t) sin ¢I] cos w_ t > (2-7) .

- [nvs(t) - nIc(t) sin ¢, + nIS(t) cos ¢I] sin w_t . J
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The in-phase and quadrature components of nl(t) and nz(t) are:

nlc(t) nuc(t) + nIc(t)

nls(t) = nus(t) + n_ (t)

Is

(2-8)

an(t)

nvc(t) + nIc(t) cos ¢; + nls(t) sin ¢,

nzs(t) = nvs(t) - nIc(t) sin o, + nIs(t) cos ¢; - /

The mean, variance and covariance of the in-phase and quadrature
components of the noise are important parameters in determining the
detection statistics. It is assumed that the receiver is designed such
that the power level of the noise in each channel is equal.

c =g . (2-9)
u v

Since the noise sources are all assumed to be zero mean processes, the

mean values of the na>ise components are:
E{n, (t)} = E{n, (£)} = E{n, (t)} = E{n, (£)} = 0 ; (2-10)

the variances are:

E{nlc2 ()} = ouz + 012 = oNZ
E{nls2 ()Y} = auz + 012 = ONZ $
(2-11)
E{“2c2 OF °v2 + 0% (cos? by + sin’ o) = oy
E{nlsz (0)} = ovz + 012 (sin ?I + cos? o) = qu

Y TR

ma k.l
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where

o> 4 Eln 2(0))

En, 2 (6))

Q
He>

2 8B ()

Q
ne>

and the covariances between components are:

E{nlc(t) nls(t)} E{an(t) nZS(t)} =0

\
E{nlc(t) nzc(t)} A Hle,2¢ = 01 ¢oS ¢p
E{n, (t) n, (&) A ¢ = -g 2 sin ¢ g (2-12)
1c 2s = "l1c¢,2s I I
E{n,_(t) n, ()} 4 u s 0,2 sin ¢
s’ 2c = "1s,2c I I
E{nls(t) nZS(t)} A Wig,26 = Op ©OS o1 .
When one defines
2
91
N 4 ;_E cos ¢I
N
s 2
I sin ¢
AN 4 > I
N $ (2-13)
o 2
2 2 %1
Ky &y Y =3
Y
A
-1 My L
¢y 4 tan (°N) =6

i

L
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the covariances become

Mle,1s - H2e,28 - O
= = 2 = 2K co (2-14)
Ple,2¢  M1s,2s | PNON Oy SNCOSdy -

2 2
“Hle,2s - Mls,2c  ANON T Oy Kyeosdy

Thus, the noise in the two channels of the receiver is correlated.

The observable signals are the sum of equations (2-5) and (2-7).

Using the noise components defined by equations (2-8), the observable

signals become:

rl(t) = [sc(t)+nlc(t)] cos mct - [ss(t)+nls(t)] sin w ¢

rz(t) [sc(t) cos ¢S(t)+ss(t) sin ¢S(c)+n2c(t)] cos w _t (2-15)

- [—sc(t) sin ¢S(t)+ss(t) cos ¢s(t)+nzs(t)] sin w t

2.2 Sampling

The observable signals rl(t) and rz(t) are quadrature sampled.
Quadrature sampling of a narrowband signal is equivalent to sampling of
the analytic signal or preenvelope [12]. Quadrature sampling is shown
in Figure 2-3. The analytic signal rp(t) is formed by the complex

function
- |
rp(t) = r(t) + 3 r(t) L

where r(t) is theHilbert Transform of r(t). For a narrowband signal ‘
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r(t) the analytic signal is:

.w t
T (0) =[rc(t) + rs(t)] el C

The analytic signal is sampled to obtain the complex low pass signal

rc(t) + 3 rs(t). Thus, the sampled signal is:
tp(n) = rc(n) + j rs(n)

The sampling is at a rate which is equal to or greater than the inverse

of the bandwidth of the low pass signal [13].

After quadrature sampling, the observable signals can be expressed

as:

rpl(n) = [sc(n) + nlc(n)] + j[ss(n) + nls(nﬂ

rpz(n) = [sc(n) cos ¢s(n) + ss(n) sin ¢s(n) + nzc(n)] s (2-16)

+ J[-sc(n) sin ¢s(n) + ss(n) cos ¢s(n) + nzs(nﬂ
The complex sequences rpl(n) and rpz(n) may be expressed in terms of

i .

their amplitude and phase,

j¢1(n) A
rpl(n) = Al(n) e (2-17)

where

.
7
:
:

1/2
A @ = ([s e ]2+ [s 4 ] %

rs (n) +n, (n)
¢1(n) = tan-lt s 1s }

sc(n) + nlc(n)

and
J.d>2(n)
rpz(n) = Az(n) e (2-18)

e— T 2 - -
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where

Az(n) = {[sc(n) cos ¢S(n) + ss(n) sin ¢s(n) + n2c<n)]2

, 172
+ [—sc(n) sin 6_(n) + s_(n) cos o_(n) + nzs(n)] }

¢2(n)

tan-l[ -Sc(n) sin ¢S(n) + sc(n) cos ¢S(n) + nZS(n)}

sc(n) cos @s(n) + ss(n) sin ¢S(n) + nzc(n)

2.3 Average Phase Estimate

It has been noted that the bandwidth of the received signal is
assumed to be much greater than the bandwidth of the time delay function.
Therefore, processing of the estimated phase difference between rpl(n)
and rpz(n) mav be simplified by avergging. Two methods that can be used
to make an average phase estimate are shown in Figure 2-4. These two
methods are identified as angle average and vector average.

If the complex conjugate of rpz(n) is multiplied by rpl(n) the

product will be:

e(n) = rpl(n) r_, (n)

*
p2

j[¢1(n)-¢2(nﬂ (219

Al(n) Az(n) e

Thus, the phase of e(n) is the phase difference of sequences rFl(n) and

rpz(n). Assuming that no noise is present, the signal phase in each of
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| the receiver channels is:
-1 Ss(n)
¢l(n) = tan ;—(n—)
c
s (n) cos 5 (n) - s (n) sin & (n)
_ -1} °s s c s
oz(n) = tan [ sc(“) cos 3 (M) s (W sin ¢s(n)] (2-20)
{ sn(n) ] f sin ¢S(n) ) ' %
- ean 1 sc(n) cos @S(n)J
L. ss(n)1 sin ¢S(n)
sc(n)J cos @s(n) }
Since
_ _tan a - tan 38
tan (o-8) = 1+ tan ¢ tan g °
1
the phase in channel 2 is
¢2(n) = ¢l(n) - ¢S(n) . (2-21)
The phase difference is then
¢l(n) - ¢2(n) = ¢s(n) . (2-22)

The phase of e(n) is the difference between the phase of the signals

in the two receiver channels. When noise is added to the observable
signal, the assumption that the phase of e(n) is the desired signal
puase difference is no longer certain.

To estimate the average phase of the complex sequence e(n), the

sequence is first divided into its real and imaginary components. 1If

]
. 9y (n) ;
e(n) = le(m)| e ¥ , '




>

X(n)

Re {e(n)]

le(n) | cos og(n) (2-23)

ne»

Y(n)

Im e(n)] ]e(n)! sin ¢N(n) . (2-2%)

To obtain the angle average phase, ¢aa’ the phase of the individual

samples is calculated and then averaged.

=1 -1 Y(n) _
%aa TN tan © () - (2-25)

'.:|1| 4
e,
[

W

The vector average phase is calculated by first averaging the real and
imaginary components and then calculating a phase from these average

vector components

N -1 h
a

PR ALY

a

Y X(n) ]

L n=0

The average phase statistics will be studied in Chapter III.

2.4 Matched Filter Detector

The matched filter transfer function is defined to be:

H(Gw) = S*(ju) e 3oT (2-27)

where S(jw) the Fourier transform of the desired signal

T

processing interval.
If the signal has a period T and is sampled and expanded in a Discrete

Fourier Series [l4], the digital equivalent to the matched filter

- - o - -] (. o e AL LGN O kL ket A8 e
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transfer function is:
H(k) = S*(k) (2-28)
where H(k) = inpulse response or transfer function of discrete
time matched filter
S(k) = coefficients of discrete Fourier series representation

of S(m).
The input to the matched filter is the average phase sequence
¢a(m). For the desired signal, the phase sequence ¢a(m) would be the
signal phase ¢s(m) corresponding to the known time delay rs(t). There-

fore, the frequency response of the desired signal is:

N -1 - 2mkm
F NF
c () = ):_ 9 (m)e » 05k s N-1 - (2-29)
m=0
where N = period of Discrete Fourier Series.

F

The Fourier coefficients of input to the matched filter are:

Np~1 _; 2rka
C¢(k) = mZ=O $ (m) e No » 035 ksN-1 . (2-30)

The Fourier transforms can also be expressed in terms of the sine and

cosine components.

Cs(k) as(k) + j bs(k)

C ¢(k)

a¢(k) +3 b¢(k)

The output of the matched filter, KT’ is

-1
A " F, Y Cyk) C*(k) (2-31)

N e e
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Expressing equation (2-31) using the sine and cosine Fourier components

1 Vet r .
i = 2, (0) a (0)+ § 1<Z=1 [a (K)+jb (k)] Las(k)-JbS(k)]
N -1
1 F
i = 2,0 a0+ g':l [a¢(k) a, () + b (0 bs(k)]
N.-1 :
F
-t [a (k) b (k) - a (k) b (k)]
Ypode LS e v

For a real sequence, the cosine terms are even functions and the sine

terms are odd functions

a(k) a(n-k)

b(k)

-b(n-k)

Therefore, the output of the matched filter can be expressed as

_F
2
A =a(0)a(0)+—2 Y
k=

. N, [a¢(k) a_(k) + b¢(k) bs(k)]

1

N N
+ a¢(—5) as(—E) , N even

If the aS(O) and as(gb terms equal zero, the output of the matched

filter is
R f
ﬁ k{i',l [a¢(k) a (k) + b (k) bs(k)], N even |
v < (2-32)
Np-t ,
\ V—: k{i [a¢(k) a (k) + b, (k) bs(k)]. N odd

—
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The common multiplier of two has been dropped since it applied to all
terms other than a(0) and a(g). The two versions, complex coefficients
and sine-cosine coefficients, of a discrete time matched filter are
shown in Figure 2-5.

The output of the matched filter is the input to the threshold
detector. The threshold is selected for a given probability of false

alarm. If the output exceeds the threshold, hypothesis Hl is selected

and the signal is considered to be present.
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CHAPTER III v

THEORETICAL DEVELOPMENT

In order to establish the receiver performance, it is necessary to
know the statistics at the threshold detector. In this chapter, the
statistical properties of the random processes are traced through the
signal processing system shown in Figure 2-1. The statistical properties
of the observable sequences are defined from the signal and noise model.
The mean and variance of the average phase estimate is calculated in

terms of the signal-to-noise ratio, signal phase, and of the complex

correlation coefficient of the noise present in the observable sequences.

The statistics of the Fourier coefficient are determined for a non-stationary
average phase estimate. From the statistics of the Fourier coefficient, the ,
statistics at the threshold detector are defined and the probability of

false alarm and probability of detection determined.

3.1 Input Signal and Noise Characteristics

The statistical properties of the observable complex sequence
rpl(n) and rpz(n) given in equations (2-16) can be defined in terms of the
signal and noise model described in Chapter II. !
The signal is a wide-sense stationary, narrowband, zero-mean,
Gaussian stochastic process having a power of 052. The mean and variance

of the in-phase and quadrature components of the signal are:
E{sc(t)} = E{ss(t)} =0 (3-1)

Es 20} = £ls 20y} = 0 - (3-2)
c = E ss (¢)r = s

e e e ————— - =t
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E{sc(t) ss(t)} =0 (3-3)

The received noise is correlated, wide-sense stationary, zero-mean,
2 .
narrowband Gaussian noise with power ON . The mean and covariance of the

in-phase and quadrature components of the noise are given by equations
(2-10) through (2-14).
The observable complex sequences can be defined in terms of the

in-phase and quadrature components.

rpl(n) = rlc(n) + ] rls(n)

(3-4)
rpz(n) = rZC(n) + 3 rZS(n)
From Equation (2-15):
rlc(n) = sc(n) + Nlc(n)
rls(n) = ss(n) + le(n)
(3-5)
rzc(n) = sc(n) cos ¢S(n) + ss(n) sin ¢s(n) + nzc(n)
rZS(n) = Sc(n) sin ¢s(n) + Ss(n) cos ¢s(n) + st(n)

The in-phase and quadrature components of the observable sequences

form a vector,

r = [r; (),r; (n),r, (n),r, (n)] (3-6)

with a four-dimensional Gaussian probability density function
p(rlc,rls,rzc,tzs). The covariance matrix of the four-dimensional proba-

bility density function can be shown to be:




F l+h

pN+h cos ¢S

L.X‘-h sin ¢s

)

[T

where h = _Ef , signal-to-noise ratio.

n

l1+h
AN+h sin ¢S

pN+h cos ¢S

QN+h cos ¢s

AN+h sin ¢s

The covariance matrix is positive definite.

probability density function is:

p(x) = 3 exp (-25' )
where

|Rr] -— determinant of matrix Rr

Rr-l -- inverse of matrix Rr'

The correlation coefficient of the sequence is

3%

ne

K e

E{rl(n)rz*(n)}

l+h

o

[etry, e @) E (rymr, )]

Substituting the appropriate terms from the covariance matrix, the

correlation coefficient becomes

(3-7)

(3-8)

The four-dimensional Gaussian

(3-9)

(3-192)

-

i
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j¢o (h cos¢ + q? + 3 (H sind_ + )
K € - S s N (3-11)
o 1+h
? The magnitude and phase of the correlation coefficient are:
| h? + p 2 + A2 + 2qh cos 0 + 2 A.h sin ¢ ‘
; 2 DN N %I cos s N sin s
: Ko = 5 (3-12) j
! (1 + h)
¢ = tan nsin ¢5+>‘N\ (3-13)
o] h cos @s + pNj
3.2 Statistical Properties of the Average Phase Estimate
The processes for obtaining the average phase estimates have been 3

rne e A

described in Chapter II. The average phase statistics will be shown to

be a function of the complex correlation coefficient between the two

1
observable sequences rpl(n) and r 2(n).

w9 T

The phase difference between rpl(n) and rpz(n) has a probability *9
density function given by [15]
2
1-K
p() = 2= (s + P G+ stn™h ) (3-14)
1-8 (1-37)
where
T L=l <7 -
i 8 = K, cos (¢-¢°), -3 < sin B—-Z (3-15)

e

|
'

The mean and variance of the single point phase estimate are [16]

_ cos‘l(Kocoswo)
s = K_sin ¢ (3-16)
S5 o o)
1-X 2c032¢
o o)

!
X
|
I
|

y
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2
2 ) (1-k %)
92 _ T _ERK )+ cos MK coss ) 2 ° (3-17)
¢ - 13 o 0C08%, 52
(1-K 2cos?s )
o [0}
where
é; K02n
E(K) = 2 (3-18)
° (2n)®
n=1 .

The mean and standard deviation of the single phase estimate are plotted

as a function of Ko and ¢° in Figure 3-1.

3.2.1 Angle Average Phase Estimate

The angle average phase estimate was defined by Equation (2-25).

If o(n) and 0¢2(n) are constant over the averaging interval, the mean

and variance of the angle average phase estimate are [17]

¢aa = ¢(n) (3-19) *
2
2 ) g, (n)
Oaa N, (3-20)

These values are also in Figure 3-1. The mean of the angle average phase

estimate is independent of the number of points averaged. Thus Figure 3.1(a)

also represents the mean of angle average phase estimate plotted as a

function of Ko and ¢°. Figure 3.1(b) can be considered as a normalized

plot of the standard deviation of the angle average phase estimate by

labelling the absissa N o__/m.
a aa

It is assumed that the number of points averaged is large enough

so that the central limit theorem may be invoked. This means that the

angle average phase estimate can be assumed to have a Gaussian distribution

e e e
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3.2.2 Vector Average Phase Estimate

The vector average phase estimate was described in Chapter II
and defined by equation (2-26). Since an expression for the probability
density function of the vector average phase estimate is not known, it is
necessary to derive such an expression. The mean, variance and correlation
coetticient are derived for the real and imaginary components of the complex
signal obtained when multiplying complex sequence rpl(n) by the complex
conjugate of the complex sequence rpz(n). The real component is considered
to be the X vector and the imaginary component is the Y vector. The
X and Y vector components are then averaged. It is assumed that the number
of points averaged is sufficient to invoke the central limit theorem and
consider the average ¥ and average Y vectors to be Gaussian distributed.
These variables are shown in Figure 2-4.

An expression is then derived for the probability density function of
the vector average phasc ‘ssuming the average X and average Y vectors
are correlated Gaussian parameters with unequal means and variances.

Since the expression for the probability density function is not easily
integrable, curves of the mean and standard deviation of the vector
average phases are generated using numerical techniques.

Expressions for the mean, variance and covariance of the real and
imaginary components of the product of a complex variable and the complex
conjugate of another complex variable are derived in Appendix A. These
expressions are given in terms of the components of the covariance matrix.
Substituting the covariance matrix terms from equation (3-7), the equations

for the moments of the X and Y vectors become




- 2
= 7 +
X=2 UN K  (1+h) cos 2

Y =2 oNZ K, (1+h) sin o_

sz =2 cN“ a+n)? (1 + k ° cos 28)
0y2 =2 CIN4 (1+h)2(l - KOZ cos 2$o)
by = 2 oN“ (1+h) 2 Koz sin 20,

The average X and average Y vectors are calculated from

N -1
a
X = L 2: X(n)
a N
a
n=o
N -1
a
t == ¥ Y()
a
a
n=o0

The moments of Xa and Ya are
X =X

Y =Y

(3-22)

(3-23)

(3-24)

(3-25)

(3-26)

(3-27)

(3-28)

(3-29)

(3-30)

(3-31)
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ua =N (3-32)

Knowing the moments of the real and imaginary vector components,
the vector average phase probability density function can now be derived. 4

Assume the Xaand Yavectors are jointly Gaussian distributed, the joint

probability density function is given by:

-2
P (x,y) = L e - ! [(K; a) !
Xy 216 0 (1-p.)* 210 %) L %%a
Xy
(X=X )(-Y ) (¥ )?
UL LAk WU ] (3-33)
xy xa ya o} 2 3
ya

The Xa and Ya vectors are related to the phase angle, ¢a and amplitude,

T, by:
2 2k
r = (Xa + Ya) (3-34)
-1 Ya
Pyg = tan = ¥ (3-35)

The probability density function of the phase angle, ¢va’ can be
determined by finding the joint probability density function of r and
¢va and then integrating with respect to r. The joint probability density

function of r, and ¢va can be found from pxy(x,y)

1
P(r,tbva) = TaT pxy(r cos @va,r sin @va) (3-36)

where
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3r or
9 X 3y
a a
J = (3"37)
2 ¢Va 2 ¢va
9 X 3 Y
a a

Substituting Equation (7-34) and (3-35) in (3-37), the Jacobian becomes:

g=—t— -1 (3-38)
vz, 2 °
t X +Y
a a

The joint probability density function of r and ¢va then becomes:

r
p(r,0_ ) = oexp [-a(r,o,) ] (3-39)
va' gm0 o (l=p 2)® va
Xa ya Xy
where
— 2 — . . -._
aens ) 1 (r cos¢va-Xa) _, (r cos¢va-xa)(r sino Ya) .
*Yva 2 2 ny o «a
o xa ya
xa
5 (r sind -Y )2
va ] (3-40)
2
c
ya

The probability density function p(¢va) can be found from

<]

1

p(d ) = J[.r exp| -a(r,¢ idr (3-41)
va M3 0 (1-p 2) = [ va]

xa ya Xy

[Ny

Performing the indicated integration and substituting the moments of

Xa and Ya, the vector average phase probability density function becomes

- .
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1
(1-k 4? N K>
p(¢ ) = 9 exp(__.é_o__
va 2

ZTr[l-Ko2 cos(d)va -¢o)] 1+ Ko

2 2 2
. vﬁ; Ky (1-K_%) cos(d -6 .) - [_ NoK ©osin®(d -9 ) ]

o
2/ [1-1(02 c:os(<i>va—¢>0)]3/2 l--Ko2 cos 2 (¢va'¢o)

1
Jﬁaxo (1-k%)* cos(¢ =) )

(1+x02)1‘(1-1<o2 cos 2(¢va-¢o))11 J

X(l+erf¢€ [ (3-42)

where
Na = number of points averaged
Ko = magnitude of correlation coefficient of the receiver observable
sequences rpl(n) and rpz(n) after complex sampling
¢° = phase of correlation coefficient
and

X
2 2

er f (x) = —*;[ exp (-Z7) dz
/. o

Probability density functions for the vector average phase are shown
in Figure 3-2(a), for various values of Ko when the number of points
averaged is held constant, and in Figure 3-2(b), for various values of Na
when Ko is constant. 1In both figures p(¢va) is plotted as a function of
(¢va-¢°)where ¢° is the phase angle of the correlation coefficient defined
by Equation (3-20). Since the expression for the probability density
function is not readily integrable, computer programs were developed to give
curves of the mean and variance of the vector average phase estimate as a
function of ¢O for a given Ko and Na. Curves of the mean and standard

deviation of the vector average phase are shown in Figures (3-3) to (3-6).

LR EI0 AR LSS
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The curves presented are for Ko = 0.025, 0.10, 0.25 and 0.50 and N = 64,
128, and 512. Values of the mean and standard deviation for other values
of Ko and N can be obtained by interpolatirg from the curves

presented.

3.3 Statistics of the Fourier Coefficient for Non-Statiomary
Periodic Input

The matched filter detector was described in Chapter II and shown
in Figure 2-5. The first function performed by the matched filter detector
is a Discrete Fourier Transform of the average phase estimate ¢a(m). The
mean and standard deviation of the average phase estimate are known. The
standard deviation is a function of the signal phase which changes with
time. Therefore, the input to the DFT must be considered to be a non-
stationary process.

The real, discrete time sequence ¢a(m) is a non-stationary random
process with mean, 6;?57, and variance, 0¢§(m). The mean and variance are
known for values of m between zero and (NF-l). Over this period, the mean
and variance of ¢ (m) can be expanded by a Discrete Fourier Transform,

F

1 2nkm
L TN Y ¢ (el N, 0<m N1 (3-43)
a
k=0
or
F-l
1 E: 2rkm
= — a_ (k) cos +
¢a(m) NF m NF
k=0
NF-I
L Z 2km
N by (k) sin o 0 0sm< N-1 (3-44)
°F
k=0

e —
7




am(k) =
bm(k) =
and
2
0¢a (m)
or
2
0¢a (m)

2mkm

Z ¢>a(m) cos ——, 0<k< NF-l >

2mkm

? O<k<N_ -
_k_‘\IF 1

. 2Tkm

"
z|
™
o
<
~~
~
N’
®
z
i

» 0<m< N-1

_ 1 2Tkm
= NF Z av(k) cos =g

K=0

43

(3-45)

(3-46)

(3-47)
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where
NF—l
2 _jZﬂkm
c, k) = ¥ Opa@ €5 N, 0<k< Np-1
m=0
NF-l
2 27km
av(k) = 2: o¢a(m) cos N » 0<k< NF-l 5 (3-48)
m=0
NF—l
2 . 2Tkm J
bv(k) = 2: G¢a(m) sin =0 , 0<k< Np-1
m=0

Sequential samples of the random sequence are assumed to be independent.

The discrete time sequence, ¢a(m),
Fourier Transform over the period NF'
of the resulting Fourier coefficient; ¢

the statistical performance of the matc

coefficients are:

can also be expanded by a Discrete
It is necessary to know the moments

(k), a,(k), and b,(k); tc establish

¢ ¢ ¢

hed filter detector. These Fourier

NF-l
_jZﬂkm
¢, (k) = L 6, e TN, 0<k< N1
o=0
NF—l
27km
a k) = L o, (m) cos N 0<ks< Np-1 ? (3-49)
m=0
NF-l
. 27km
b(p(k) = Z 3 (m) sin ——NF » 0<k< No-1 /
m=0
- - 4 e

>

ienaheosiion
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3.3.1 Mean Value of the Fourier Coefficient

The mean value of a linear summation of random variables is equal
to the linear summation of the mean values of the random variables. There-
fore, the mean values of the Fourier Coefficients in equation (3-49) are

equal to the right-hand side of equation (3-45). Thus

Co(k) = C (k) \
a, (k) = a (k) (3-50)
by (k) = b (k)

/

The mean of the Fourier coefficients for the DFT representation of Oa(m)
is equal to the respective Fourier coefficients of the DFT expansion of the

mean @a(m) of the random sequence.

3.3.2 Variance of the Fourier Coefficients

The variance of a linear summation of uncorrelated random variables
is equal to the summation of the squares of the linear coefficients times
the variance of each random variable. Therefore, variance of the Fourier

coefficients is given by:




g (k) =

o (k) =

o, (k)

Z o(ba

2: O¢az(m) (sin

m=0

2(m) (cos

amkm 2
N )
F

21km 2
Tk
°F
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(3-51)

The right-hand side of the equation for the exponential coefficient is

the DC term of the discrete Fourier Transform expansion of the variance

of the random sequence ¢a(m) [see Equation (3-48) with k set equal to

zero]. Therefore,

2
o, (k) = Cv(o)

Replacing the squared terms in Equations (3-51) with their

respective trigonmetric identity, the variance of the sine and cosine

coefficients become:

NF-I
2: ze(m) cos Akm

1
2 NF
m=0
NF-l
1 2 41km
> E: Ux (m) cos NF

m=0

(3-52)

(3-53)
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The first term in the above equation is one half the DC term in the DFT

expansion of the variance of the random sequence @a(m).

second term with Equation (3-48), it is easily shown that

NF—l

2: sz(m) cos

m=0

4mkm

av(O) = CV(O)

av(2k)

Np < a (o) = C (o)

av(Zk—NF)

’

Therefore, the expression for the variance becomes:

2
o, (k)=

cbz(k>=g

c
v

YT

o=

(o)

[cy(o) + av(Zk)]

’

[cv(o) + av(Zk—n)],

cv(O)

2>

1 [cv(o)-av(Zk)]

% [c, (0)-a(2k-n)]

14

N
F
k—b E) 2

Comparing the

(3-54)

(3-55)

(3-56)
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3.3.3 Correlation of the Sine and Cosine Coefficients

The covariance between the sine and cosine coefficients is given

by
NF-l NF—l
Y= 27kn . 27km
uab(&)— 2: 2: E {éa(n) ba(m)} cos Np sin NF
n=0 =0
- a(k) b(k)

Sequential samples of the random sequence are independent; therefore the

covariance is:
1

47Tkm

g

rofs

NF—
. _ 2 . -
“ab(k)- 2: o (m) sin (3-57)
=0
Comparing the right—hand term of Equation (3-56) with Equation (3-48), the

expression for the covariance becomes

N
-0 L
0 » k=0, =
1 N
= — i G -5
by () ﬁ 5 b, (2k) , 1<k<s (3-58)
N
1 b (2k-n), —<k<Vp 1
5 v 2 =

3.3.4 Correlation Between Fourier Coefficients of Different Harmonics

The covariance terms becween Fourier Coefficients of different

harmonics are:
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b(k,1) = Eleec (1)} - o( (D)
H (k1) = E {a(k)a(1)} - a(k) a()
Wy (k1) = E{b()b(1)} - b(k) b(2)
uab(k,l)= E {a(k)b(1)} - a(k) b(R)
Substituting
NF—l
_: 2 (k=2)m
b (k,2) = T o(baz(m) e T,
m=0
NF_l NF_l
21 2 (k+H)m 1 2 27 (k=)=
ua(k,l) =3 Z 0¢ (m) s ——-—NF + > Z Od)a (m) cos —NF
m=0 m=0
NF-l VF-l
1 2 27 (k-2 1 2 21 (k+2)
ub.(k,i’,) =3 Z Otba (m) cos —(Tp-m -3 Z o¢a (n) cos W—VF——m
m=0 =0
NF—l I»F-l
1 2 . 21 (k+)m 1 ., 2m(k=-L)m
uab(k,£)=-5 E: O¢a (m) sin ——jﬁ;fl—-+-5 2: a¢a (n) 51n-——£§;—l—
=0 m=0

i
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Comparing the above equations with Equations (3-48), the covariance
expressions become
(k0 = e (k-R)
Uo(ko2) == a (ke2) + % a (ktl)
a'’ 2 v 2 v B
(3-59)
5,0 =2 a (k=2) - 3 a (k)
b 2 v 2 v
B (ky8) = 2 b (k#R) - = b (k-2)
ab" "’ 2 v 2 v

3.3.5 Distribution of the Fourier Coefficients

The sine and cosine Fourier coefricients are formed by a linear
transformation of random variables. Therefore, the Fourier coefficients
are also random variables and they have a Gaussian limiting distribution.
For the cases under consideration it will be assumed that NF is large
enough that the central limit theorem applies and the distribution of
the sine and cosine Fourier Coefficients can be considered to be Gaussian
with mean and variance as previously derived.

The moments of the Fourier coefficients for the real discrete,
random sequence ¢a(m) are summarized in Table 3-1. If the Fourier
Coefficients of the DFT expansion of the variance of sequence ¢a(m) has
a DC term which is large with respect to any of the higher order coeffi-

cients, the input sequence can be considered to be stationary. For a

stationary sequence, the mcients given in Table 3-1 can be simplified as

R



TABLE 3~1

MOMENTS FOR FOURIER COEFFICIENTS OF NON-STATIONARY SEQUENCE

k=0 l<k< (-1 k=3 4+ 1) << (8=1) !
4 1
) ¢, (0 Co(0) c, c_( {
2, i
S, (k) CV(O) CV(O) CV(O) CV(O) !
! u (k. 2) c, (- ¢, (k=2) cv(%- %) ¢, (k=2) i
0 a () a (1) a (4 a_(x) ‘
m m o 2 o :
(0) + a,,(2k) C + 2%=N) !
oaz(k) cv(o) &__ZL Cv(o) V_(o)_.__Ef.‘_’(— '
) 0 by (k) 0 | b_ (k) ;
€. (0) - a_(2K) ' C.(0) ~ a_(2k-¥) [
2 v v v v |
oy (k) 0 —_— 0 ————— |
I b, (2k) b, (2x=x) ‘
Pai (k) 0 T 172 0 T 73 [
[cv (0) -a “(20)] [cv ()] -a, (k=3 )4 - |
a_(k-2) + a_(k+2) a (k=2) + a (k+i) l
v v N i
u,(k,2) a (%) 5 a (5 -1) v > 4 I
i
a_(k-2) - a_(k+R) k-2) - M
uy (k. 2) 0 Y 4 0 Sy (et) - a, (e
2 2
by(k+) = by (k-2 N b, (k+e) = b (x~--) '
U, p D) b, (%) 3 b (5 - z : §
Nl _j Zrka Np-1 P
N e '
O = ) e e = Y ofm e %
=0 o=0
N-1 Ne-1
an(k) - y $,(m) cos %‘- lv(k) b 0‘:(0) cos 27\;@ ‘
w0 F L I °F
N1 . ) Ng-1
bn(k) - Z @a(ﬂl) sin —ﬂN 2 bv(k) - Z 0\:(!\) sin -’:f(ﬂ \
=0 F = ’ °F
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given in Table 3-2.

3.4 Statistics of Threshold Detector Input

The output of the matched filter is given by the equation (2~31).
This parameter is the input to the threshold detector which determines
if the desired signal is present. The mean value of the threshold detector

input is

K

7 = L [a ) a) +b (k) b(k)] (3-60)
T

where:

N-1 , N odd .

The variance can be found from

_— —2

2 2
T AT

Expanding, the variance of AT becomes

R
0,2+ T (a0 0,200 + b (0 0,20 + 2a_() b (k) u_, (K)]
kel
K K

+ E: 2: (a (k) a_(Bu_(k,2) + b_(k) b_(R) W, (k,2)

k=1 =1
Lk
+ 2 as(k)bs(ﬁ) ab(k,l)] (3-61)

- : 2 T . RN 075 . vy it




TABLE 3-2

APPROXIMATE VALUE FOR MOMENTS OF FOURIZR COEFFICIENTS

ASSUMING STATIONARY INPUT SEQUENCE

L e -

k=0 1§k§<%-1) k=S (L +1) <x- (-1
< (%) c_(x) ¢ (1 c_(k) c_(x)
o 2t ¢, (0 ¢, (0 c, (0 c,(0
0 (k.2) ¢ 0 0 0
a(k) am(k) am(k) ) am(k) am(k)
c,(0) Cy(0)
3,200 €,(0) - ¢, (0 e
p,(k.2) 0 0 0 0
b (k) 0 b, (K) 0 by (K)
(0) (0)
0,200 0 S 0 “
oy (k,2) 0 0 0 0
04y (kL) 0 0 0 0
4 2mkm NF-l
T e T .. 27k3
- k - ) :
Cn(k) Z X(m) e % bm( ) X(m) sin H
=
N
T~y 27km 2
a (k) = i X(m) cos T}' c, (0 = i o (2

B B

vk TR LA AT DT
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where the values of the variance and covariance terms can be found in
Tables 3-1 or 3-2. Since the Fourier coefficients are assumed to be

Gaussian, the input to the threshold detector is also Gaussian.

r (. - A 20

1 i T T)
P(A,) = exp | - (3-62)
T y2m a, [ 2o>\2 j

The probability that AT will exceed the threshold is

A =X

=Ll - -
PARPAL) =5 [1 erf (3-63)

The likelihood functions can be obtained from the probability desnity

function of AT

po(Ap) = PO S AL S A+ dAg IHO) ) (3-64)

|A
A

py(Ap) = p()\T rSA dA |n1) (3-65)

3.5 Receiver Operating Characteristics

The receiver operating characteristics, ROC, curves relate the
probability of detection versus the probability of false alarm for a given
signal-to-noise ratio. These curves can be determined from the properties
of the desired signal, the signal phase, the properties of the correlated
noise and the signal-to-noise ratio. The likelihood ratios can be found
in the following manner:

1. Determine the input noise correlation coefficients ON and AN;

the signal-to-noise ratio h and the phase ¢s(t), of the

desired signal.

»




2. Calculate the observable signal correlation coefficient

magnitude K, and phase ¢, using Equations (3-12) and (3-13).
Values of Ko and ¢o should be calculated over the total processing

interval (or sequence period).

3. Determine the mean and variance of the average phase over the
total processing interval. NOTE: it is assumed the averaging
time is short enough that the signal phase can be considered

constant during the averaging interval.

4, Calculate the Fourier coefficients for the mean and variance of
the average phase.

5. Calculate the statistical moments of the DFT coefficients using
Table (3-1) [Table (3-2) if the average phase variance is inde-
pendent of time]. 3

6. Determine the mean and variance of the threshold detector input «
using Equations (3-60) and (3-61).

7. The likelihood function is calculated using Equation (3-62).

For the Ho hypothesis, the mean and variance of the average phase
will be constant over the processing period. The input to the matched

filter is stationary and the values for the moments of DFT coefficients

are:
(k) =0 , kK#0 (3-66)
2 2 Ne 94a (3-67) '
o, (k) = % k) = 5




where

G¢a - variance of average phase estimate given Ho

NF - number of points in DFT.

The mean and variance of the threshold detector input are:

>
(]
o

To
K

N

002 - %’ T [a ) +b_2(0)]
2

Ao” =
k=1

and the likelihood ratio is:

AZ
po(AT)=—l- exp(- TZ)

Y21 o 20

Ao Ao

The probability of false alarm is:

2

P =i[1-erf M ]

fa 2 V2 )0

The likelihood ratio for the H

the steps given. The probability of detection can then be determined

from the pl(lT) likelihood function.

1 hypothesis can be found using

56

(3-68)

(3-69)

(3-70)

(3-71)

———— e T
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CHAPTER IV

DETECTION OF KNOWN SIGNALS

The preceding chapters described a receiver to detect a dual
channel differential phase modulated signal and developed the theoretical
results necessary to determine the receiver operating characteristic
curves. In this chapter we will apply those results to the detection of
"known signals.” "Known signals" is used to mean signals as described in
Chapter II with a known signal phase delay function. One example will
be examined. The example is a linear delay which is often encountered in
a practical application. Radiation from a source moving with a constant
velocity will result in an approximate linear phase delay between the
output of two spatially separated sensors. The matched filter configura-
tion is determined, the mean and variance of the average phase estimate
calculated in both the time domain and the frequency domian, and the ROC
curves developed. The average phase estimate is calculated for both

the angle average and vector average cases so that the effect of the

averaging method on the receiver operating characteristics can be examined.

Detection of these known signals is evaluated under varying noise
correlation conditions. The magnitude, KN’ and phase, ¢“, of the

noise correlation coefficients considered are:

v s o
- O e YR SIS
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Ky = 0
KN = 0.5, ¢N =0
KN = 0.5, ¢N =7
2
K., =07, ¢,=T1
N N 4

KN = 0.2, ¢N =

Two cases are investigated using the preceding correlated noise conditions.
For the first case, the noise correlation is known a priori allowing the
detecticn threshold to be fixed for a desired false alarm rate. 1In the
second case, the noise correlation is unknown a priori and the threshold
is set based on an assumed correlation condition. The analytical ROC
curves are generated for two threshold settings.

The examples considered have 6400 points in the processing interval 3
and each interval represents one period of the time delay function. The
6400 points are processed by averaging 100 points and performing a 64-point
DFT. No attempt is made to investigate an optimum trade-off between the

number of points averaged and number of points in the DFT.

4,1 Linear Delay With Known YNoise Correlation

The linear (or ramp) phase delay function is:

t) = o (-1 +2L), 0<t<T
64(6) = 0 (-1 +25) ft<
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i
The phase delay of the sampled signal becomes: ;
d (n) = ¢ (-1 + 20y, 0<n<nN-1 . 4=
s P N == (4-1)
For the example being investigated ¢p was chosen to be 7/2 radians !
(90%).
The Fourier transform of the linear delay is: ;
a(ky=20 (4-2)
i S
i
! > N
:i =——L < < - -
| b_(k) ool 12k <N-1 (4=3)
¢
The configuration used in implementing the filter is an approximation
of the ideal matched filter in that only the first three harmonics are b |

used as shown in Figure 4~1. The configuration was chosen to simplify

implementation and because after the averaging process the higher harmonics .
fall off faster than the inverse of k.
The likelihood functions are again found using the procedure from
Chapter III. The steps will not be presented in detail. Any approxima~
tions will be discussed and the results presented.
Figures 4-2 through 4-4 show the correlation coefficient between
the observable signals, the angle average mean and variance and the vector
average mean and variance, respectively. These variables are all shown for
a signal-to-noise ratio of -12 dB.
The mean and variance of the input to the threshold detector are

based on the first three harmonics. The mean of AT is:
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and the variance can be calculated assuming the average phase estimate
is staticnary with a variance equal to the average of the variance of

the individual estimates over a processing interval.

N

A 2(64)2 36 v

) . (4-5)

Equation (4-5) was used in calculating the ROC curves. In Figures

4-5 and 4~6, the ROC curves for a probability of false alarm of 10—3

S T e TR e R

and all noise correlation conditions are combined for angle average and
vector average phase estimates, respectively. A comparison of the
receiver performance as a function of noise correlation can be made. The
variation in signal-to-noise ratio for a given P is less than 1.2 dB
for the angle average case. The vector average method results in receiver
performance which is more sensitive to noise correlation.

The ROC curves for the angle average phase estimate case can be
further understood with the aid of Figure 4-3. The waveform shape of
the mean of the average phase estimate remains highly linear over all the
noise correlation conditions. The variance varies over a 3:1 range as
the noise correlation changes but, in general, the peak-to-peak value of
the mean increases as the variance increases. Thus, the detection per-
formance when using angle average phase estimate is relatively insensitive
to the noise cor-=lation.

The detection performance when using the vector average phase

estimate can be explained with the help of Figure 4-4. Consider first,
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the case of correlated noise, KN = 0.2, @N = 7. The variance of the

phase estimate is 2.86 when no signal is present. The standard deviation

of the test statistic under the Ho hypothesis is 0.295. At the high

signal-to-noise ratio, the maximum peak value of the mean phase estimate is

7/2. Thus, the maximum mean value of the test statistic is 0.458. In
order to obtain a probability of false alarm of 10-3, the threshold

must be set 3.09 times the standard deviation or greater than maximum
mean value of the test statistic. As the signal-to-noise ratio increases
the variance and mean decreases and the probability of the test statistic
exceeding the threshold decreases at signal-to-noise ratios greater than
-6 dB. For probability of false alarm greater than 6 X 10-2, the maximum
mean value of the test statistic will exceed the threshold. This behavior
could be avoided by increasing the number of points in the matched filter
DFT.

Examination of mean phase estimate in Figure 4-4 shows the waveform
is badly distorted for noise correlation of KN = 0.5, ¢N = 7/2. With
noise correlation phase of m/2 and signal-to-noise ratio less than the
noise correlation magnitude, the mean vector average phase estimate
waveform is no longer matched to the filter in the detector. As the

signal-to-noise increases the mean vector average phase estimate waveform

ay'in becomes approximately linear. This noise ratio decreases in Figure

4-6 when the noise correlation phase is m/2.

DU WS
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4.2 Urknown Noise Correlation, Fixed Threshold Detector

Previously, it was assumed that the magnitude and phase of the
noise correlation coefficient were known and the detector threshold could
be set for a given probability of false alarm. It is also of interest to
examine the case of a fixed threshold when the noise correlation is un-
known.

Figures 4-7 and 4-8 are the receiver operating characteristics when
the angle average method is used to estimate the average phase. The thres-
hold was set to give a probability of false alarm of 10—3; in Figure 4-7
the threshold was set based on uncorrelated noise and in Figure 4-8 a
noise correlation coefficient of KN = 0.5, ¢N = 0 was assumed. These
curves can be compared directly with Figure 4-5 where the noise correlation
was assumed known.

For the values of actual noise correlation considered in Figure 4-7,

the worse case probability of false alarm would increase to 2.4 x 10_3 at

a noise correlation of KN = 0.2, ¢N

of KN = 0.5, ¢N =0 or KN

a 1.1 dB loss. In Figure 4-8, the receiver sensitivity suffers no loss,

but the probability of false alarm increases to 1.9 x 10_2 if the actual

m. For an actual noise correlation

0.7, ¢N w/4 the receiver sensitivity suffers

noise correlation were KN = 0.2, ¢N = 7, the probability of false alarm
would not exceed 10_3 for any of the actual cases considered and the loss
of receiver sensitivity would be 1.8 dB. Thus, the performance of the
receiver is relatively insensitive to noise correlation coefficient when
using an angle average phase estimate and for the values of correlation

considered.
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The receiver operating characteristics when the vector average

phase estimate is used are shown in Figures 4-9 and 4-10 for the same
cases as considered previously. 1In Figures 4-9 and 4-10 the threshold
was set assuming noise correlation of KN = 0.0 and KN = 0.5, ¢N =0,
respectively. These receiver operating characteristics are sensitive to
actual noise correlation coefficient. In Figure 4-9, the probability of
false alarm increases to 2.5 x 10-3 for an actual noise correlation of
KN = 0.2, ¢ = m. For other noise correlation conditions, the receiver
sensitivity decreases such that for a signal-to-noise ratio of -4 dB the
probability of detection is less than 10-4.. The curves in Figure 4-10
show a worse case decrease in expected receiver sensitivity of 6.8 dB
while the probability of false alarm increases to 0.45 when the noise
correlation is KN = 0.2, ¢N = m, It would be undesirable to use the

vector average phase estimate if the noise correlation coefficient were

not exactly known.

4.3 Comparison with Cross Correlation Detector

The cross correlation receiver is commonly used to detect Gaussian
signals in Gaussian noise. To detect a dual channel, differential phase
modulated signal in correlated noise, the cross correlator receiver in-
cludes a noise decorrelator or spatial pre-whitener and phase compensation.
The detection performance of this cross correlation receiver is compared
with the phase matched filter receiver for detection sensitivity and the
sensitivity of the receivers to the noise correlation coefficient.

The cross correlation detector with spatial prewhitening and signal

phase compensation is described in Appendix B. The necessary equations
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to calculate the receiver operating characteristic curves are also
contained in Appendix B. The ROC curves for the linear time delay and

a probability of false alarm of 10_3 were generated for two cases:

1) the noise correlation known, and 2) noise correlation unknown but
threshold, prewhitening and phase compensation set assuming a noise corre-
lation value. These ROC curves are compared with corresponding curves

for the signal phase matched filter detector using either angle average

or vector average phase estimation.

4.3.1 Known Noise Correlation

The ROC curves for a cross correlation detector using spatial
prewhitening and signal phase compensation are shown in Figure 4-11. These
curves represent the case when the threshold was set to give a probabilitv
of false alarm of 10—3 and thus correspond to the ROC curves in Figures
4-5 and 4-6 for the receiver using a signal phase matched filter. For
the values of noise correlation considered, ! :e cross correlation receiver
using spatial prewhitening is 3.3 to 4.7 db more sensitive than a receiver
using angle average phase estimate and a phase matched filter detector.

The cross correlation receiver is 0.7 to 8.8 dB more sensitive than a
receiver using vector average phase estimate and a phasematched filter

detector.

4.3.2 Unknown Noise Correlation

Two cases were examined for the cross correlation receiver with
the spatial prewhitening, signal phase compensation and threshold set

assuming a given noise correlation and the actual noise correlation
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being a different value. The ROC curves in Figures 4-12 and 4-13 are for
assumed noise correlation of KN = 0.0 and KN = 0.5, ¢N = 0, respectively.
If the assumed noise is uncorrelated and the actual noise correlation is
KN = 0.5, ¢N = 03 KN = 0.5, ¢N = /2 or KN = 0.7, ¢N = 7/4, the probability
of detection will be greater than 0.9999. However, the probability of
false alarm will also be greater than 0.9999. The same applies if the
assumed noise correlation is KN = 0.5, ¢N = ) and the actual noise
correlation is KN = 0.2, ¢N = 7. To reduce the probability of false alarm,
it would be necessary to increase threshold and suffer the corresponding
loss in sensitivity.

The ROC curves in Figures 4-12 and 4-13 can be compared directly
with Figures 4-7 through 4-10 for the receivers using signal phase matched
filter detector. The receiver which is least sensitive to the actual
noise correlation is the receiver using angle average phase estimation

and a signal phase matched filter.
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CHAPTER V

SUMMARY AND CONCLUSIONS

5.1 Summary

This research studied the signal detection characteristics of a
receiver with two input channels. The signals received in both channels
are random, narrowband processes which are identical except for a known,
variable channel-to~channel time delay. The known time delay is represented
by a carrier frequency phase shift when expressing the narrowband random
signals. The noise is also a narrowband, random process. There can be
correlation between the noise in each of the input channels.

Chapter Il explained the generalized received signal and noise
model and described the receiver being studied. The receiver estimates
the average phase difference between the observable signals in each of
the input channels. Methods of forming the average phase estimate consid-
ered are angle averaging and vector averaging. The average phase signal is
passed through a filter whose transfer function is matched to the known
time varying, signal phase. The filter is implemented using a discrete
Fourier transform. The output of the filter is threshold detected to
determine the presence of a signal with the known phase shift.

The theoretical statistics required to determine the detection per-
formance of the receiver were developed in Chapter III. The statistics
are functions of the input signal~to-noise ratio, the correlation of the
noise in the two receiver input channels, the period of the phase averages
and the number of points used in the discrete Fourier transform. The

moments of the vector average phase estimate were derived. The variance of

. ——.
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the average phase signal varies with time; therefore, the moments of the
Fourier coefficients were derived assuming a non-stationary periodic in-
put. The receiver likelihood functions were determined so the probability
of false alarm and probability of detection could be calculated.

In Chapter IV, the detection performance was determined for an example
of possible signal phase shift function. The phase shift function consider-
ed was a linear phase shift. The receiver operating characteristic curves
were generated for several noise correlation conditicns assuming the noise
correlation was known a priori. Finally, receiver operating characteris-
tic curves were generated when the detection threshold was set for an
assumed noise correlation but the actual noise correlation was not known
a priori.

A performance comparison of the receiver using an average phase
estimate and phase matched filter detector to a cross correlation detector
was made. The cross correlation detector included a noise decorrelator
and phase shift compensator. Comparisons were made assuming the noise
correlation was known a priori and then assuming the chreshold was set

for a given noise correlation but the noise was not known a priori.

5.2 Conclusions

It was stated that the signal processing was intended to detect
at low signal-to-noise ratios and over a variety of noise correlation
values. The receiver proved to be robust under these conditions when the
angle averaging method of estimating the average phase was used. For the
noise correlation conditions investigated, the variation in signal-to-noise

ratio for a given probability of detection was less 1.2 dB. The
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performance when using the vector average phase estimate was more sensitive

to the value of the noise correlation. When the noise correlation is known

. exactly a priori, the choice of phase averaging method depends on the

exact value of the correlation and the desired probability of false alarm.

In the case of a fixed threshold based on an assumed value of noise cor-
relation where the actual noise correlation is not known a priori, the
performance using the vector average phase estimate is unsatisfactory.

The variance of the test statistics and hence the threshold setting is
sensitive to the actual value of the noise correlation. The angle average
phase estimate is less sensitive to the actual value of the noise
correlation. When the noise correlation is not known a priori and the
angle average phase estimate is used, a threshold setting can be found
which will give variation in signal-to-noise ratio of less than 6 dB for

a given probability of detection and a probability of false alarm below a
desired level. For the noise correlation values studied, the variacion
in signal-to-noise ratio for 50% probability of detection was 2 dB.

A comparison of a cross correlation receiver with noise decorrelator
and phase compensator and a receiver using an average phase estimate and
phase matched filter detector was made for the noise correlation known a
priori and for a threshold based on an assumed noise correlation when the
actual correlation was not known a priori. The cross correlation receiver
is approximately 4 dB more sensitive than a receiver using an angle
average phase estimator when the noise correlation is known a priori. The
cross correlation receiver is 1 to 9 dB more sensitive than a receiver
using an vector average phase estimator when the noise correlation is known

a priori. If the noise correlation is not known a priori, the performance
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of the cross correlation detector is unsatisfactory.

The major accomplishment of this research is the development of a
receiver with fixed detection threshold and signal processing which will
detect a differential phase modulated zignal in correlated noise when the
value of the noise correlation is unknown. The phase matched filter
receiver with an angle average phase estimator can be used over a wide
range of noise correlation values. Although it is not as sensitive as the
cross correlation receiver under known noise conditions, its sensitivity

does not degrade as much when the noise correlation is not known a priori.

5.3 Future Research

Several areas need further research to fully understand and optimize
a receiver to detect a dual rhannel, differential phase shifted signal.
Some of these topics are discussed briefly.‘

The detection of known signals was performed with a given phase
averaging period and a given number of points in the discrete Fourier
transform. No attempt was made to optimize these variables or the trade-
off between them. A trade-nff study should be performed to determine the
total processing period and the division of the samples within the process-
ing period between the phase averages and discrete Fourier transform.

The detection of known signals assumed a peak phase for the desired
signal. In some systems, the magnitude of the peak phase may be a design
parameter. The curves of the mean average phase have a peak at a value of
signal pn=se that is a function of the signal-to-~noise ratio and noise
correlation coefficient. The presence of this peak implies that there may

be a value peak signal phase that is optimum.
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APPENDIX A

SELECTED MIXED CENTRAL MOMENTS OF QUADRIVARIATE
GAUSSIAN DENSITY FUNCTION
The mean, variance, and covariance of the real and imaginary
components of a product of two complex variables can be found from the
appropriate mixed central moments of the joint density function of the
components of the two complex variables. The product of a complex variable

multiplied by the complex conjugate of the second complex variable is

given by
vk = + v - jv
u (uc jus) ( c s)

* = 3 - -
uv (ucvc + usvs) + J(usvc ucvs). (A-1)

The real and imaginary components are:
x=Re [uv*] =uv +uyv (A-2)
cc s's

y = Im [uv*] = u v, - uv, (A-3)

The mean, variance, and covariance values can be obtained from the
mixed central moments of the joint probability distribution of the

iables u v and v _.
variable ¢ Yg? c? s

The variables U,» U Vs and Vs are zero mean Gaussian variables,

described by covariance matrix:

R = [E {z 2'}] (A-4)

where the vector Z is related to the variables U.s Ugs Vs and vs by




The ij th term of R is equal to the jith term so that the covariance
matrix is symmetric. The quadrivariate Gaussian density function is

given by

1

P(2) = 5
(zm)“ |r|

177 <P ( -3z R-l.Z] «

and the characteristic function is

1,
c(iw) =e ~ 29 R (A-7)
or
4 4
C(jw) = exp {—-;- Z Z W iy wi} (A-8)
i=1 =1
where
Ty E {zizj}

I€

= [ml' UZ’ Was wa]'

b1 b2 b3 by
The mixed moment E{xl X, X3 X, } where bi are positive integers

can be found from
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( b, b2 bj bu} 1 5
Eiz z z z =
1 2 3 4 B/2 ' b, ba.,, b3 by
a (B/2)! Swl awz ow3 BMA
4 4 B/2
w W
X L L %" © =0
=1 k=l 1
Uk=0 (A-g)
where

B = b1 + b2 + b3 + b4

Of interest in finding the mean, variance, and covariance are terms of

1727374

the form E{z.z. 1}, E{z.zz.z}, E{z.z.z.z,} and E{z.zz
i%j i % i

is:

1% i

E{zi2 z.z} is given by

] 4 4
4
2 2 ]
E{zi 2 }

-1
8 awizam'z
3 i=1  j=1

z z\: Wy rij ©y

jzk}. The first term

(A-10)

The only terms which will not be zero are those terms of the form

2 2

ui wJ . «5 therefore,

2 2 2
3 } = rii rjj + 2 rij

e o e

(a-11)
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Similarly for E{zi2 zj zk}, the only non-~zero term are of the form

wi mj mk « « o therefore,
2
E{wi vy oW }

and

E{z,z.,2z.2z

Vo=
1%2%3%4° T T1pf34 t T13T04 t T14T03

The terms of interest are:

E{ucvc} = r

13
E{ucvs} T T4
E{uv } = Toq
E{usvs} T T
E{uczvcz} = Ty Tyyt
E{uczvsz} = Ty1 Tus +
E{uszvcz} T T22 T3 M
Blug vy '} =yt ¢
Blu, v v } = 11 T34
E{“szvcvs} = Ty Tyt
E{ucusvcz} T T332 +
E{ucusvsz} T Tas T12 +

kT Ty Ty t

2 rij

2
13
2
14
2
23
2
24

r

13

23

13

Y14

Using equations (A-13) and (A-14),

components are:

X = r13 + r24

Tik

T14

Ta4

T23

Tas

(A-12)

(A-13)

s (A-14)

the moments of the real and imaginary

z: e 250

(A-15)




F11 T33
F11 Tas

(r13+ r

R oo s el

2 2
+ r22 r44 + r13 + r24 + 2 r14r23 + 2 r12r34

r z + 2

2
Ty Tay3t Ty, T Ty 13%24 ¥ 21

12534

26) (Fa3m Tpp) + 1p(rg5m 1) + 14, (rpp- 1))
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(A-16)

(A-17)

(A-18)

(A-19)
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APPENDIX B

NOISE DECORRELATOR, SIGNAL PHASE COMPENSATION,
CROSS CORRELATION RECEIVER
The cross correlation receiver is shown in Figure B-1. The
observable signals are processed by a noise decorrelator and phase
compensator. The signal processing is then split into two channels.
The first channel estimates the covariance and the second channel
estimates the power level. The weighted differences of the two process-

ing channels is formed.

If the weighted difference is positive, the signal present hypothesis

is selected.

Noise Decorrelator

The transfer function of the noise decorrelator is:

1 0
By = | Ry eI . (8-1)
/1K 1K,

where KN and ¢N are the estimated magnitude and phase of the noise

correlator and coefficient. The covariance matrix of the input signals

is:

c o -14 (B-2)
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The covariance matrix at the output of the decorrelator is:

+
Rp = “D Rr HD

- J6 . 3¢
Ke °-KNe ¢N
1 [
/hgz
2
Ry = 0,

A2 -~
1+KN - ZKO Ky cos(¢o-¢N)

For signal-plus-noise with the decorrelator and noise matched, the

> 2

1=Ky

covariance matrix at the output of the decorrelator is:

- jo_
hKe ©
1+h —m
/ 1—KN2
2
R = g
P s+N N
=3¢
hKe ™ h K 2
. 1 + mz
1_KNZ l-KN |
where

- ~ 2
Km = [(cos ¢s - Kn cos ¢N) + (sin ¢s

- N 2]1/2
- Kn sin ¢N)

-1 sin ¢s - éN sin ;“
= tan ( ~ — j
cos ¢s - KN cos ¢
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(B-3)

(B-4)

(B~5)

(B-6)
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Phase Compensation |4
The phase compensation operates on the observable signal to cause A

the covariance terms to be real. This is accomplished with the transfer \
function: k
1 0 y
Hm = ) (8-7) ’
e, :

0] e

- o, . 3y -i4 ;
. (Koe °-KNe ¢N) e O .1 3
- 1
1K
R =0’ (8-8)
36 . -3bg 30 A A )
(Koe °-KNe ¢‘N) e © 1+KN2 - 21(o KN cos (¢°-¢N)
L 4 l‘ﬁNZ 1—;([‘12 .

For the signal-plus-noise case, Ru becomes:

- hK 1 3
) 1+h -
~ 2
l-lgd ;.ﬂ
2
R = g (B-9) !
us+n N
h K
m
~ 2




covariance matrix becomes:

2
| e Oy
where
A2 ~ ~
. 2 _ 1+ KN -2 KoKN cos(¢o-¢N)
u l—KNZ
36 36 -3¢
(K e o—KNe n) e ®
p = Re 2

16 . 36, -3¢
(Koe o_KNe N) e o )

Covariance Estimator

The covariance estimator performs the operation:
N-1

Al '% Z x(n)
n=0

94

The signal phase is a time varying function. The time delay compensation
3 then must also be a function of time. If Ru is put in terms of the real

and imaginary components of u the isomorphic counterpart for the general

(B-10)

(B-11)

(B~-12)

(B-13)

(B-14)
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where
{
x(n) = Re {u,(n) uz*(n)} (B-15) ;
E
The mean and variance of x can be found from the expression developed é:
!4
in Appendix A. !
.'i
=242, (B-16) X
o "u Ul
}
’1
2 _ 4, 2 2 2 _ i
o, = 2 % (au + Py ~ Au ) . (B-17) !
i
The x variable is averaged to form an estimate of the covariance. ;
The covariance estimate Al is Gaussian distributed with a mean and ;L
variance i
!
2 N-1 i
= A9 |
X = — L o, (n) (B-18) |
u
n=0 f
i
8o 4 N-1
2 0 2 2 2
o = =3 L [ m +00m -2 jm ] . (8-19)
N
n=0 [

Power Estimator

The power level estimate is: H
N-1 N-1
1 1 \
2y L w@ urm +g T ouy(n) uy*(n) (B-20)
n=0 : n=0 )

The power level estimator is assumed to be Guassian with mean and variance:

=202 1+32 T ol (8-21)
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4 N-1
2 4% 1+ 3 ) + 2 0 2m) + 2 2 2(n) (B-22)
92 N N z [au (o Pu (» A (n] ’
n=0

The covariance between the power level estimate and the covariance

estimate is:

T
o 2
o % L [eum 1+a, (w ] (B-23)
n=0

Test Statistic

The test statistic is the weighted difference of the covariance

estimate and the power level

estimate

R G, (B~24)
The mean variance of the test statistic is:
N-1 N-1
- 2} 2 1 2
)\c 200 N Z pu(n) -G [1 + N Z @y (n)] (B~25)
n=0 n=0
4o 4 N-1
2 _ o 2 2 2 _ 2
0. =% 5 Y [au (@) +p "(n) = A, (n)]
n=0
2 N-1
2 G 2 2 2
+6% 4 Z[uu(n)+29u(n)+20u(n)]
n=1
N-1
4 G 2
A28 T e [1402m] V. (B-26)
n=0
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For the case of noise only and the noise and decorrelator are

perfectly matched, the mean and variance is:

Xc l“ = - AoN G (B-27)
4
8o
2 N 2
9. . N 1+6G . (B-28)

The signal present hypothesis is selected if the test statistic is

greater than zero. The probability of false alarm is given by

ot o (2]

n

2~
N

(B-29)

v2N G
1 -erf} ——————
/2 /1462
The probability of detection is given by:

-2
Pfaa %[l_erf (_C‘ls"‘_n__)]
2 oCiS"'ﬂ

(B-30)
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